Transcription Factor HBP1 Enhances Radiosensitivity by Inducing Apoptosis in Prostate Cancer Cell Lines

نویسندگان

  • Yicheng Chen
  • Yueping Wang
  • Yanlan Yu
  • Liwei Xu
  • Youyun Zhang
  • Shicheng Yu
  • Gonghui Li
  • Zhigeng Zhang
چکیده

Radiotherapy for prostate cancer has been gradually carried out in recent years; however, acquired radioresistance often occurred in some patients after radiotherapy. HBP1 (HMG-box transcription factor 1) is a transcriptional inhibitor which could inhibit the expression of dozens of oncogenes. In our previous study, we showed that the expression level of HBP1 was closely related to prostate cancer metastasis and prognosis, but the relationship between HBP1 and radioresistance for prostate cancer is largely unknown. In this study, the clinical data of patients with prostate cancer was compared, and the positive correlation was revealed between prostate cancer brachytherapy efficacy and the expression level of HBP1 gene. Through research on prostate cancer cells in vitro, we found that HBP1 expression levels were negatively correlated with oncogene expression levels. Furthermore, HBP1 overexpression could sensitize prostate cancer cells to radiation and increase apoptosis in prostate cancer cells. In addition, animal model was employed to analyze the relationship between HBP1 gene and prostate cancer radiosensitivity in vivo; the result showed that knockdown of HBP1 gene could decrease the sensitivity to radiation of xenograft. These studies identified a specific molecular mechanism underlying prostate cancer radiosensitivity, which suggested HBP1 as a novel target in prostate cancer radiotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-26b enhances radiosensitivity of hepatocellular carcinoma cells by targeting EphA2

Objective(s): Although low-dose radiotherapy (RT) that involves low collateral damage is more suitable for hepatocellular carcinoma (HCC) than traditional high-dose RT, but to achieve satisfactory therapeutic effect with low-dose RT, it is necessary to sensitize HCC cells to irradiation. This study was aimed to determine whether radiosensitivity of HCC cells can be enhanced using miR-26b by tar...

متن کامل

بررسی اثرات ضد سرطانی سنه سیونین و پیرگیاه در رده های سلولی سرطانی پروستات

Background and purpose: This research aimed at evaluating the effects of senecionine and Senecio vulgaris extract on apoptosis and cell cycle inhibition. Also, their cytotoxicity on prostate cancer cell lines (PC3, DU145 and HGFs), antioxidant effects, and influences on AR and CLU gene expression were investigated. Materials and methods: In this experimental study, senecionine and S. vulgaris ...

متن کامل

Effects of Copper Nanoparticles in Prostate Normal and Cancer Cell Lines

 Background and purpose: In clinical treatment of cancer, improving the efficacy of drugs and targeted drug delivery have always been a fundamental problem requiring more focused solutions. The purpose of this study was to investigate the protective effects of copper nanoparticles in prostate normal and cancer cell lines. Materials and methods: In this experimental study, different concentrati...

متن کامل

Stattic Enhances Radiosensitivity and Reduces Radio-Induced Migration and Invasion in HCC Cell Lines through an Apoptosis Pathway

Purpose Signal transducer and activator of transcription factor 3 (STAT3) is involved in tumorigenesis, development, and radioresistance of many solid tumors. The aim of this study is to investigate the effects of stattic (an inhibitor of STAT3) on the radiosensitivity and radio-induced migration and invasion ability in hepatocellular carcinoma (HCC) cell lines. Methods HCC cells were treated...

متن کامل

Inhibition of NF-kappaB, clonogenicity, and radiosensitivity of human cancer cells.

BACKGROUND Activation of the transcription factor NF-kappaB is part of the immediate early response of tissues to ionizing irradiation. This pathway has been shown to protect cells from tumor necrosis factor-alpha, chemotherapy, and radiation therapy-induced apoptosis (programmed cell death). However, because the role of NF-kappaB as a modifier of the intrinsic radiosensitivity of cancer cells ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016